IMRN International Mathematics Research Notices
1994, No. 1

Affine Kac-Moody Algebras and Polydifferentials

A. Beilinson and V. Drinfeld

Let \mathfrak{g} be a finite-dimensional algebra over \mathbb{C} with a fixed invariant symmetric bilinear form $c(x, y)$. (Readers accustomed to traditional notation may assume that $c(x, y)=c \cdot(x, y)$ where (x, y) is an invariant scalar product on \mathfrak{g} and $c \in \mathbb{C}$ is the "level".) Set $\mathcal{O}=\mathbb{C}[z]]$, $\mathrm{K}=\mathbb{C}((z)), \mathfrak{m}=z \mathbb{C}[[z]] \subset \mathcal{O}$, and $\mathfrak{g}_{\mathrm{K}}=\mathfrak{g} \otimes \mathrm{K}$. We consider $\mathfrak{g}_{\mathrm{K}}$ as a Lie algebra over \mathbb{C}. The 2-cocycle B: $\mathfrak{g}_{\kappa} \times \mathfrak{g}_{\mathrm{K}} \rightarrow \mathbb{C}$ given by

$$
\begin{equation*}
\mathrm{B}(\mathfrak{u}, v)=\operatorname{res}_{z=0} \mathrm{c}\left(\mathfrak{u}^{\prime}(z), v(z)\right) \mathrm{d} z \tag{1}
\end{equation*}
$$

defines a central extension of $\mathfrak{g}_{\mathrm{K}}$ which will be denoted $\hat{\mathfrak{g}}_{\mathrm{k}}^{c}$. As a vector space $\hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ is the direct sum of \mathfrak{g}_{κ} and a one-dimensional vector space generated by an element 1 . The commutator in $\hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ is denoted by $[\cdot, \cdot]_{c}$ and defined by

$$
\begin{align*}
{[u, v]_{\mathrm{c}} } & =[u, v]+\mathrm{B}(u, v) \cdot \mathbf{1} \quad \text { for } u, v \in \mathfrak{g}_{\mathrm{K}} \tag{2a}\\
{[1, u] } & =0 \quad \text { for } u \in \hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}} . \tag{2b}
\end{align*}
$$

Set $\mathrm{U}^{\mathrm{c}} \mathfrak{g}_{\mathrm{K}}=\mathrm{U} \hat{\mathfrak{g}}_{\mathrm{K}}^{c} /(1-1)$ where $\mathrm{U} \hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ is the universal enveloping algebra of $\hat{\mathfrak{g}}_{\mathrm{K}}^{c}$. Usually we will write U^{c} instead of $U^{c} \mathfrak{g}_{k}$. The standard filtration of $U \hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ induces a filtration U_{\bullet}^{c} on U^{c}, where $\mathrm{U}_{\mathrm{k}}^{c}$ is the vector space generated by products of $\leq \mathrm{k}$ elements of \mathfrak{g}_{k}. Let I_{n}^{c} be the left ideal of U^{c} generated by $\mathfrak{g} \otimes \mathfrak{m}^{n} \subset \mathfrak{g}_{k}, n \geq 0$. Set $I_{n, k}^{c}=I_{n}^{c} \cap U_{k}^{c}$. Using the Poincaré-Birkhoff-Witt theorem and the fact that $\mathfrak{g} \otimes \mathfrak{m}^{n}$ is a subalgebra of $\hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ it is easy to show that

$$
\begin{equation*}
I_{n, k}^{c}=U_{k-1}^{c} \cdot\left(\mathfrak{g} \otimes \mathfrak{m}^{n}\right) . \tag{3}
\end{equation*}
$$

If $c=0$ then $U^{c} \mathfrak{g}_{k}=U_{\mathfrak{g}_{k}}$. In this case we write $U_{k}, I_{n}, I_{n, k}$ instead of $U_{k}^{c}, I_{n}^{c}, I_{n, k}^{c}$.

In representation theory one usually considers the completion

$$
\widehat{\mathrm{U}}^{\mathrm{c}}:=\underset{\mathrm{k}}{\lim } \lim _{\underset{\mathrm{n}}{ }} \mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}}
$$

rather than U^{c} itself. The goal of this paper is to describe the dual space ($\left.\widehat{\mathrm{U}}^{\mathrm{c}}\right)^{*}$. In order to do this it is enough to describe the space $\left(U_{k}^{c} / I_{n, k}\right)^{*}$ for all n and k and the natural mappings between them. This is easy for $k=1$. Indeed, since $U_{1}^{c} / I_{n, 1}^{c}=\mathbb{C} \oplus\left(\mathfrak{g} \otimes\left(K / \mathfrak{m}^{n}\right)\right)$, we have $\left(\mathrm{U}_{1}^{\mathrm{c}} / \mathrm{I}_{\mathfrak{n}, 1}^{\mathrm{c}}\right)^{*}=\mathbb{C} \oplus\left(\mathfrak{g}^{*} \otimes\left(\mathrm{~K} / \mathfrak{m}^{\mathfrak{n}}\right)^{*}\right)$ and $\left(\mathrm{K} / \mathfrak{m}^{\mathfrak{n}}\right)^{*}$ can be identified with the space of differentials $w=f(z) d z$ where $f \in z^{-n} \mathbb{C}[[z]] \subset K$. (A differential w defines a linear functional $\varphi \rightarrow$ $\left.\operatorname{res}_{z=0} \varphi w, \varphi \in K.\right)$

If $k>1$ we need some notation. Let $\Omega_{\mathcal{O}}$ be the module of continuous differentials of \mathcal{O}; it consists of expressions $f(z) d z, f \in \mathcal{O}$. Set $\Omega_{K}=\Omega_{\mathcal{O}} \otimes_{\mathcal{O}}$ K. Denote by \mathcal{O}_{r} (resp. $\Omega_{r}^{\mathcal{O}}$) the completed tensor product of r copies of \mathcal{O} (resp. of $\Omega_{\mathcal{O}}$). Set $\Omega_{r}^{K}=\Omega_{r}^{\mathcal{O}} \otimes_{\mathcal{O}_{r}} K_{r}$ where K_{r} is the field of fractions of \mathcal{O}_{r}. We identify \mathcal{O}_{r} with $\mathbb{C}\left[\left[z_{1}, \ldots, z_{r}\right]\right]$ and write elements of Ω_{r}^{K} as $f\left(z_{1}, \ldots, z_{r}\right) d z_{1} \ldots \mathrm{~d} z_{r}$ where f belongs to the field of fractions of $\mathbb{C}\left[\left[z_{1}, \ldots, z_{r}\right]\right]$. Elements of Ω_{r}^{K} will be called polydifferentials. The only difference between polydifferentials and differential r-forms is that an element σ of the symmetric group S_{r} is supposed to $\operatorname{map} f\left(z_{1}, \ldots, z_{r}\right) d z_{1} \cdots d z_{\mathrm{r}}$ to $f\left(z_{\sigma(1)}, \ldots, z_{\sigma(r)}\right) d z_{1} \cdots d z_{\mathrm{r}}$ while $\sigma\left(f\left(z_{1}, \ldots, z_{\mathrm{r}}\right) d z_{1} \wedge \cdots \wedge d z_{\mathrm{r}}\right)=$ $(-1)^{l(\sigma)} f\left(z_{\sigma(1)}, \ldots, z_{\sigma(r)}\right) d z_{1} \wedge \cdots \wedge d z_{r}$ where $l(\sigma)$ is the number of inversions.

We are going to construct a canonical isomorphism between $\left(\mathrm{U}_{\mathrm{k}}^{c} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}}\right)^{*}$ and the following space $\Omega_{n, k}^{c}$.

Definition. $\quad \Omega_{n, k}^{c}$ is the set of $(k+1)$-tuples $\left(w_{0}, \ldots, w_{k}\right), w_{r} \in\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{K}$, such that:
(1) w_{r} is invariant with respect to the action of the symmetric group $S_{r}\left(S_{r}\right.$ acts both on $\left(\mathfrak{g}^{*}\right)^{\otimes r}$ and on $\left.\Omega_{r}^{K}\right)$;
(2) \mathcal{w}_{r} has poles of order $\leq n$ at the hyperplanes $z_{i}=0,1 \leq i \leq r$, poles of order ≤ 2 at the hyperplanes $z_{i}=z_{j}, 1 \leq i<j \leq r$, and no other poles;
(3) if $w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=\mathrm{f}_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right) \mathrm{d} z_{1} \cdots \mathrm{~d} z_{\mathrm{r}}, \mathrm{r} \geq 2$, then

$$
\begin{equation*}
\mathrm{f}_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=\frac{\mathrm{f}_{\mathrm{r}-2}\left(z_{1}, \ldots, z_{\mathrm{r}-2}\right) \otimes \mathrm{c}}{\left(z_{\mathrm{r}-1}-z_{\mathrm{r}}\right)^{2}}+\frac{\varphi^{*}\left(\mathrm{f}_{\mathrm{r}-1}\left(z_{1}, \ldots, z_{\mathrm{r}-1}\right)\right)}{z_{\mathrm{r}-1}-z_{\mathrm{r}}}+\cdots \tag{4}
\end{equation*}
$$

Here c is considered as an element of $\mathfrak{g}^{*} \otimes \mathfrak{g}^{*}, \varphi^{*}:\left(\mathfrak{g}^{*}\right)^{\otimes(r-1)} \rightarrow\left(\mathfrak{g}^{*}\right)^{\otimes r}$ is dual to the mapping $\varphi: \mathfrak{g}^{\otimes r} \rightarrow \mathfrak{g}^{\otimes(r-1)}$ given by $\varphi\left(a_{1} \otimes \cdots \otimes a_{r}\right)=a_{1} \otimes \cdots \otimes a_{r-2} \otimes\left[a_{r-1}, a_{r}\right]$, and the dots in (4) denote an expression which does not have a pole at the generic point of the hyperplane $z_{\mathrm{r}-1}=z_{\mathrm{r}}$.

Let us explain that in (4) we consider f_{r} as a function with values in $\left(\mathfrak{g}^{*}\right)^{\otimes r}$.
The space $\Omega_{n, k}^{c}$ is equipped with the topology induced by the embedding $\Omega_{n, k}^{c} \hookrightarrow$ $\prod_{0 \leq r \leq k}\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{\mathcal{O}}$ given by $\left(w_{0}, \ldots, w_{k}\right) \mapsto\left(\eta_{0}, \ldots, \eta_{k}\right), \eta_{r}=\prod_{i} z_{i}^{n} \cdot \prod_{i<j}\left(z_{i}-z_{j}\right)^{2} \cdot w_{r}$.

We will denote $\Omega_{n, k}^{c}$ for $c=0$ simply by $\Omega_{n, k}$.
Theorem. (1) There is a pairing $\langle\rangle:, U_{k}^{c} \times \Omega_{n, k}^{c} \rightarrow \mathbb{C}$ such that, if $0 \leq r \leq k, u_{1}, \ldots, u_{r} \in$ $\mathfrak{g}_{\mathrm{k}}, w=\left(w_{0}, \ldots, w_{\mathrm{k}}\right) \in \Omega_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}}$, then

$$
\begin{equation*}
\left\langle u_{1} \cdots u_{r}, w\right\rangle=\underset{z_{1}=0}{\operatorname{res}} \cdots \underset{z_{r}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{\mathrm{r}}\right), w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)\right) \tag{5}
\end{equation*}
$$

(2) The pairing (5) defines a topological isomorphism $\Omega_{n, k}^{c} \xrightarrow{\sim}\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$ where the topology on $U_{k}^{c} / I_{n, k}^{c}$ is assumed to be discrete.

Let us explain that in (5) $u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right)$ is a function with values in $\mathfrak{g}^{\otimes r}, w_{r}$ is a polydifferential with values in $\left(\mathfrak{g}^{*}\right)^{\otimes r},\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right), w_{r}\left(z_{1}, \ldots, z_{r}\right)\right)$ is a scalarvalued polydifferential, and the notation $\operatorname{res}_{z_{1}=0} \cdots$ res $_{z_{r}=0}$ means that we first compute the residue with respect to z_{r} considering $z_{1}, \ldots, z_{\mathrm{r}-1}$ as parameters, and then we compute the residue with respect to z_{r-1}, etc. For instance, to compute

$$
\underset{z_{1}=0}{\operatorname{res}} \operatorname{res}_{z_{2}=0} \psi\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

we have to consider ψ as an element of $\mathbb{C}\left(\left(z_{1}\right)\right)\left(\left(z_{2}\right)\right)$ and find the coefficient $a_{-1,-1}$ in the corresponding power series

$$
\begin{equation*}
\psi\left(z_{1}, z_{2}\right)=\sum_{j=-m}^{\infty} z_{2}^{\mathfrak{j}} \cdot \sum_{i=-N(m)}^{\infty} a_{i j} z_{1}^{i} \tag{6}
\end{equation*}
$$

By abuse of language, (6) will be called the power series decomposition of ψ in the domain $\left|z_{1}\right| \gg\left|z_{2}\right|$. Notice that if $\psi\left(z_{1}, z_{2}\right)$ is meromorphic, then

$$
\underset{z_{1}=0}{\operatorname{res}} \operatorname{res}_{z_{2}=0} \psi\left(z_{1}, z_{2}\right) d z_{1} d z_{2}=\frac{1}{(2 \pi i)^{2}} \oint_{\left|z_{1}\right|=\varepsilon_{1}} \oint_{\left|z_{2}\right|=\varepsilon_{2}} \psi\left(z_{1}, z_{2}\right) d z_{1} d z_{2}, \quad 1 \gg \varepsilon_{1} \gg \varepsilon_{2}>0
$$

Proof of the theorem. To prove statement (1) we have to show that

$$
\begin{align*}
\underset{z_{1}=0}{\operatorname{res} \cdots \underset{z_{r}=0}{\operatorname{res}}} & \left(u _ { 1 } (z _ { 1 }) \otimes \cdots \otimes u _ { i - 1 } (z _ { i - 1 }) \otimes \left(u_{i}\left(z_{i}\right) \otimes u_{i+1}\left(z_{i+1}\right)\right.\right. \\
& \left.\left.-u_{i+1}\left(z_{i}\right) \otimes u_{i}\left(z_{i+1}\right)\right) \otimes u_{i+2}\left(z_{i+2}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right), w_{r}\left(z_{1}, \ldots, z_{r}\right)\right) \\
= & \underset{z_{1}=0}{\operatorname{res}} \cdots \underset{z_{r-1}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{i-1}\left(z_{i-1}\right) \otimes\left[u_{i}\left(z_{i}\right), u_{i+1}\left(z_{i}\right)\right]\right. \\
& \left.\otimes u_{i+2}\left(z_{i+1}\right) \otimes \cdots \otimes u_{r}\left(z_{r-1}\right), w_{r-1}\left(z_{1}, \ldots, z_{r-1}\right)\right) \\
& +\underset{z=0}{\operatorname{res} c\left(u_{1}^{\prime}(z), u_{2}(z)\right) d z \cdot \underset{z_{1}=0}{\operatorname{res}} \cdots \underset{z_{r-2}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{i-1}\left(z_{i-1}\right)\right.} \\
& \left.\otimes u_{i+2}\left(z_{i}\right) \otimes \cdots \otimes u_{r}\left(z_{r-2}\right), w_{r-2}\left(z_{1}, \ldots, z_{r-2}\right)\right) \tag{7}
\end{align*}
$$

Since w_{r} is S_{r}-invariant, the left-hand side of (7) can be rewritten as

$$
\begin{align*}
& \underset{z_{1}=0}{\operatorname{res} \cdots} \text { res res } \\
& z_{i-1}=0 \operatorname{res} \tag{8}\\
& z_{i}=0 \\
& z_{i+1}=0 \\
&-\underset{z_{1}=0}{ }\left(z_{1}, \ldots, z_{i+1}\right) \\
& \text { res } \ldots \underset{z_{i-1}=0}{ } \underset{z_{i+1}=0}{ } \underset{z_{i}=0}{ } \eta\left(z_{1}, \ldots, z_{i+1}\right)
\end{align*}
$$

where $\eta\left(z_{1}, \ldots, z_{i+1}\right)=\operatorname{res}_{z_{i+2}=0} \cdots \operatorname{res}_{z_{r}=0}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right), w_{r}\left(z_{1}, \ldots, z_{r}\right)\right) . \eta$ has poles only at the hyperplanes $z_{k}=0,1 \leq k \leq \mathfrak{i}+1$, and $z_{k}=z_{l}, 1 \leq k<l \leq i+1$. Therefore

$$
\begin{align*}
& \underset{z_{i}=0}{\text { res res }} \operatorname{ric}_{z_{i+1}=0} \eta\left(z_{1}, \ldots, z_{i+1}\right)-\underset{z_{i+1}=0}{\text { res }} \underset{z_{i}=0}{\operatorname{res}} \eta\left(z_{1}, \ldots, z_{i+1}\right) \\
& \quad=-\underset{z_{i}=0}{\text { res }} \operatorname{rres}_{z_{i+1}=z_{i}} \eta\left(z_{1}, \ldots, z_{i+1}\right) \tag{9}
\end{align*}
$$

where the right-hand side is understood as follows: we first consider z_{i} as a parameter, compute the residue at $z_{i+1}=z_{i}$, and then compute the residue at $z_{i}=0$. Let us explain that if η is meromorphic, (9) is easily obtained by expressing residues as Cauchy integrals, while in the general case one can either prove (9) by direct computations or deduce it from Parshin's residue formula [P, §1, Proposition 7] which asserts that, if f belongs to the field of fractions of $\mathbb{C}[[z, u]]$, then

$$
\begin{equation*}
\sum_{C}{\underset{z}{z=u=0}}_{\text {res }}^{\operatorname{res}} f(z, u) d z \wedge d u=0 \tag{10}
\end{equation*}
$$

where the summation is over all irreducible "formal curves" $\varphi(z, u)=0, \varphi \in \mathbb{C}[[z, u]]$.
It is easy to deduce from (4) that

$$
\begin{align*}
\underset{z_{i+1}=z_{i}}{\operatorname{res}} \eta\left(z_{1}, \ldots, z_{i+1}\right)= & c\left(u_{i}\left(z_{i}\right), u_{i+1}^{\prime}\left(z_{i}\right)\right) \cdot \underset{z_{i+2}=0}{\text { res }} \cdots \underset{z_{r}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right)\right. \\
& \otimes \cdots \otimes u_{i-1}\left(z_{i-1}\right) \otimes u_{i+2}\left(z_{i+2}\right) \otimes \cdots \\
& \left.\otimes u_{r}\left(z_{r}\right), w_{r-2}\left(z_{1}, \ldots, z_{i-1}, z_{i+2}, \ldots, z_{r}\right)\right) \\
& -\underset{z_{i+1}=0}{\operatorname{res}} \cdots \underset{z_{r-1}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{i-1}\left(z_{i-1}\right)\right. \\
& \otimes\left[u_{i}\left(z_{i}\right), u_{i+1}\left(z_{i}\right)\right] \otimes u_{i+2}\left(z_{i+1}\right) \otimes \cdots \\
& \left.\otimes u_{r}\left(z_{r-1}\right), w_{r-1}\left(z_{1}, \ldots, z_{r-1}\right)\right) \tag{11}
\end{align*}
$$

It follows from (9) and (11) that (8) is equal to the right-hand side of (7). So we have proved the statement (1) of the theorem.

Since the order of the pole of w_{r} at $z_{r}=0$ is $\leq n$, the right-hand side of (5) vanishes provided $\mathfrak{u}_{r} \in \mathfrak{g} \otimes \mathfrak{m}^{n}$. Taking into account (3), we see that the pairing (5) defines a mapping $\psi: \Omega_{n, k}^{c} \rightarrow\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$. If $\left(w_{0}, \ldots, w_{k}\right) \in \Omega_{n, k}^{c}$ and $\lambda=\psi\left(w_{0}, \ldots, w_{k}\right)$, then (5) shows that
$w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)$ has the following power series decomposition in the domain $\left|z_{1}\right| \gg\left|z_{2}\right| \gg$ $\cdots \gg\left|z_{\mathrm{r}}\right|:$

$$
\begin{align*}
w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)= & \sum_{l_{1}, \ldots, l_{r}} \sum_{i_{1}, \ldots, i_{r}} \lambda\left(e_{i_{1}}^{\left(l_{1}\right)} \cdots e_{i_{r}}^{\left(l_{r}\right)}\right) e^{i_{1}} \otimes \cdots \otimes e^{i_{r}} \\
& \times z_{1}^{-l_{1}-1} \cdots z_{r}^{-l_{r}-1} d z_{1} \cdots \mathrm{~d} z_{\mathrm{r}} . \tag{12}
\end{align*}
$$

Here $\left\{e^{i}\right\}$ is a basis of \mathfrak{g}^{*} and $e_{i}^{(l)}=e_{i} z^{l} \in \mathfrak{g}_{K} \subset U^{c}$ where e_{i} is the dual basis of \mathfrak{g}. (12) implies that ψ is injective. To prove the surjectivity of ψ we must show that for any $\lambda \in\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{n, \mathrm{k}}^{\mathrm{c}}\right)^{*}$ the $(k+1)$-tuple $\left(w_{0}, \ldots, w_{k}\right)$ defined by (12) belongs to $\Omega_{n, k}^{c}$. Clearly, $w_{r}=f_{r} d z_{1} \cdots d z_{r}$ where $f_{r} \in\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \mathbb{C}\left(\left(z_{1}\right)\right) \cdots\left(\left(z_{r}\right)\right)$. We must first of all prove that $f_{r} \in\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes K_{r}$ where K_{r} is the field of fractions of $\mathbb{C}\left[\left[z_{1}, \ldots, z_{\mathrm{r}}\right]\right]$. (This may be considered as a kind of analytical continuation of the right-hand side of (12).) We also have to verify the properties (1)-(3) from the definition of $\Omega_{n, k}^{c}$.

Let us introduce the "fields" $A_{i}(\zeta)$ defined by

$$
\begin{equation*}
A_{i}(\zeta)=\sum_{l} e_{i}^{(l)} \zeta^{-l-1} \tag{13}
\end{equation*}
$$

where $e_{i}^{(l)}$ has the same meaning as in (12). (Since $e_{i}^{(l)}=e_{i} z^{l}$ we can write heuristically $A_{i}(\zeta)=\delta(z-\zeta) e_{i}$ where the " δ-function" is defined by $\delta(z-\zeta)=\sum z^{l} \zeta^{-l-1}$.) $A_{i}(\zeta)$ is a formal power series in ζ with coefficients in $\mathfrak{g}_{K} \subset \mathrm{U}^{c}$. Now we can rewrite (12) as

$$
\begin{equation*}
w_{r}\left(z_{1}, \ldots, z_{r}\right)=\sum_{i_{1}, \ldots, i_{r}} \lambda\left(A_{i_{1}}\left(z_{1}\right) \cdots A_{i_{r}}\left(z_{r}\right)\right) \cdot\left(e^{i_{1}} \otimes \cdots \otimes e^{i_{r}}\right) d z_{1} \cdots d z_{r} \tag{14}
\end{equation*}
$$

Since $\left[e_{i}^{(l)}, e_{j}^{(m)}\right]=l c_{i j} \delta_{l,-m}+\sum f_{i j}^{q} e_{q}^{(l+m)}$, where $c_{i j}$ is the matrix of the bilinear form c and $f_{i j}^{q}$ are the structure constants of \mathfrak{g}, we have $\left[A_{i}(\zeta), A_{j}(v)\right]=c_{i j} \delta^{\prime}(v-\zeta)+\sum f_{i j}^{q} A_{q}(\zeta) \cdot \delta(\zeta-v)$ and therefore

$$
\begin{equation*}
(\zeta-v)^{2} A_{i}(\zeta) A_{j}(v)=(\zeta-v)^{2} A_{j}(v) A_{i}(\zeta) \tag{15}
\end{equation*}
$$

Set $D\left(z_{1}, \ldots, z_{r}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2}$. It follows from (14) and (15) that the formal power series $\tilde{w}_{r}\left(z_{1}, \ldots, z_{r}\right):=\mathrm{D}\left(z_{1}, \ldots, z_{\mathrm{r}}\right) w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)$ is S_{r}-invariant. Since $\lambda: \mathrm{U}^{\mathrm{c}} \rightarrow \mathbb{C}$ is trivial on $I_{n, k}^{c},(14)$ implies that the power series $w_{r}\left(z_{1}, \ldots, z_{r}\right)$ does not contain z_{r}^{m} for $m<-n$. The same is true for $\tilde{w}_{r}\left(z_{1}, \ldots, z_{r}\right)$, but since \tilde{w}_{r} is S_{r}-invariant we see that for any $i \in\{1, \ldots, r\}$ and $m<-n, \tilde{w}_{r}$ does not contain z_{i}^{m}. So we have proved that $w_{r}=f_{r} d z_{1} \cdots d z_{r}$ where $f_{r} \in\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes K_{r}$ and that w_{0}, \ldots, w_{k} have the properties (1) and (2) from the definition of
$\Omega_{n, k}^{c}$. The property (3) follows from the "operator product expansion"

$$
\begin{equation*}
A_{i}(\zeta) A_{j}(v)=\frac{c_{i j}}{(\zeta-v)^{2}}+\sum_{q} f_{i j}^{q} \frac{A_{q}(\zeta)}{\zeta-v}+\cdots, \quad|\zeta| \gg|v| . \tag{16}
\end{equation*}
$$

Here $|\zeta| \gg|\gamma|$ is just a heuristic way of saying that $(\zeta-v)^{-1}:=\sum_{k=0}^{\infty} \zeta^{-k-1} \nu^{k},(\zeta-\gamma)^{-2}:=$ $\sum_{k=1}^{\infty} k \zeta^{-k-1} v^{k-1}$ and the dots in (16) denote a formal series $\sum_{i, j} a_{i j} \zeta^{i} v^{j}$ such that $a_{i j} \in U^{c}$ and for any $n \geq 0$ there is an M with the property that $a_{i j} \in I_{n}^{c}$ provided $i<-M$ or $j<-M$.

From the construction of $\psi: \Omega_{n, k}^{c} \rightarrow\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$ and $\psi^{-1}:\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*} \rightarrow \Omega_{n, k}^{c}$, it is clear that both mappings are continuous.

Remark. Our theorem has a global counterpart. In the case $c=0$ it can be formulated as follows. Let G be an affine algebraic group over \mathbb{C}, X a connected smooth projective curve over \mathbb{C}, \mathcal{F} a G-bundle on X such that $\operatorname{Aut} \mathcal{F}$ is finite, $S=\operatorname{Spec} B$ the base of the universal deformation of \mathcal{F}, and m the maximal ideal of B. Then B / m^{k} has the following description. Let $\mathfrak{g}_{\mathcal{F}}$ be the vector bundle on X corresponding to \mathcal{F} and the adjoint representation of X. Let $\Omega_{k}(\mathcal{F})$ be the space of $(k+1)$-tuples $\left(w_{0}, \ldots, w_{k}\right)$ where w_{r} is a symmetric rational polydifferential on X^{r} with values in $\mathfrak{g}_{\mathfrak{F}}^{*} \boxtimes \cdots \boxtimes \mathfrak{g}_{\mathcal{F}}^{*}$ having only simple poles at the diagonals $x_{i}=x_{j}$ with residues given by formula (4) for $\mathrm{c}=0$. Then $\mathrm{B} / \mathrm{m}^{\mathrm{k}}$ is canonically isomorphic to $\Omega_{k}(\mathcal{F})$. The proof will be given elsewhere.

Let us show that the isomorphism $\Omega_{n, k}^{c} \rightarrow\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{n, \mathrm{k}}^{\mathrm{c}}\right)^{*}$ is compatible with various structures on $\Omega_{n, k}^{c}$ and $\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$. First of all, the diagrams

are commutative. Since the mapping $U_{k}^{c} / I_{n, k}^{c} \rightarrow U_{k+1}^{c} / I_{n, k+1}^{c}$ is injective, we obtain the following result.

Proposition 1. The mapping $\Omega_{n, k+1}^{c} \rightarrow \Omega_{n, k}^{c}$ is surjective.
Remarks. (1) The above proof of Proposition 1 makes use of formula (3) which follows from the Poincaré-Birkhoff-Witt theorem.
(2) Here is a sketch of a geometric proof of Proposition 1. Let $\left(w_{0}, \ldots, w_{k}\right) \in \Omega_{n, k}^{c}$. We must show that there is a $w_{k+1} \in\left(\mathfrak{g}^{*}\right)^{\otimes(k+1)} \otimes \Omega_{k+1}^{K}$ such that $\left(w_{0}, \ldots, w_{k+1}\right) \in \Omega_{n, k+1}^{c}$. Set $\mathrm{V}=\operatorname{Spec} \mathbb{C}\left[\left[z_{1}, \ldots, z_{\mathrm{k}+1}\right]\right]$. Let $\Delta_{i j} \subset \mathrm{~V}$ be the divisor $z_{i}=z_{j}$. Denote by Y the union of all subschemes of V of codimension 3 having the form $\Delta_{i j} \cap \Delta_{r s} \cap \Delta_{t u}$. Since $H^{1}\left(V \backslash Y, \mathcal{O}_{V}\right)=0$, it is enough to show that for any $\left(z_{1}, \ldots, z_{k+1}\right) \in V \backslash Y$ there is an w_{k+1} which has the desired properties in a neighborhood of $\left(z_{1}, \ldots, z_{k}\right)$. There are two nontrivial cases: (1) $z_{i}=z_{j}$,
$z_{\mathrm{r}}=z_{\mathrm{s}}, \mathrm{i} \neq \mathfrak{j} \neq \mathrm{r} \neq \mathrm{s},(2) z_{\mathrm{i}}=z_{j}=z_{l}, i \neq j \neq l$. In the second case the existence of $w_{\mathrm{k}+1}$ follows from the Jacobi identity in \mathfrak{g}.

Now consider the symbol epimorphism $\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{n, \mathrm{k}}^{\mathrm{c}}\right)^{*} \rightarrow \operatorname{Sym}^{\mathrm{k}}\left(\mathfrak{g}_{\mathrm{K}} /\left(\mathfrak{g} \otimes \mathfrak{m}^{\mathfrak{n}}\right)\right)$. It induces an injection $\Gamma^{k}\left(\left(\mathfrak{g}_{\mathrm{K}} /\left(\mathfrak{g} \otimes \mathfrak{m}^{n}\right)\right)^{*}\right) \hookrightarrow\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{n, k}^{c}\right)^{*}$ where Γ^{k} denotes the symmetric part of the k tensor power. On the other hand we have a canonical isomorphism $\left(\mathfrak{g}_{\mathrm{K}} /\left(\mathfrak{g} \otimes \mathfrak{m}^{\mathfrak{n}}\right)\right)^{*} \xrightarrow{\sim}$ $\mathfrak{g}^{*} \otimes \Omega_{\mathrm{K}}^{(\mathfrak{n})}$ where $\Omega_{\mathrm{K}}^{(\mathfrak{n})}$ is the space of differentials $\eta \in \Omega^{K}$ having a pole of order $\leq \mathfrak{n}$ at the point $z=0$. It is easy to see that the diagram

is commutative, where f is the linear mapping such that for any $\eta \in \mathfrak{g}^{*} \otimes \Omega_{K}^{(\mathfrak{n})}$ one has $f\left(\eta^{\otimes k}\right)=\left(w_{0}, \ldots, w_{k}\right), w_{k}\left(z_{1}, \ldots, z_{k}\right)=\eta\left(z_{1}\right) \otimes \cdots \otimes \eta\left(z_{k}\right), w_{r}=0$ for $r<k$.

Denote by V the space of invariant symmetric bilinear forms on \mathfrak{g}. If $c_{1}, c_{2} \in V$, we have the comultiplication homomorphism $\Delta: \mathrm{U}^{\mathrm{c}_{1}+\mathrm{c}_{2}} \rightarrow \mathrm{u}^{\mathrm{c}_{1}} \otimes \mathrm{U}^{\mathrm{c}_{2}}$ such that $\Delta(u)=u \otimes 1+$ $1 \otimes u$ for $u \in \mathfrak{g}_{K} \subset u^{c_{1}+c_{2}}$. It induces a mapping $u_{k}^{c_{1}+c_{2}} / I_{n, k}^{c_{1}+c_{2}} \rightarrow\left(U_{k}^{c_{1}} / I_{n, k}^{c_{1}}\right) \otimes\left(U_{k}^{c_{2}} / I_{n, k}^{c_{2}}\right)$ and therefore a mapping $\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}_{1}} / \mathrm{I}_{n, \mathrm{k}}^{\mathrm{c}_{1}}\right)^{*} \otimes\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}_{2}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}_{2}}\right)^{*} \rightarrow\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}_{1}+\mathrm{c}_{2}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}_{1}+\mathrm{c}_{2}}\right)^{*}$. So $\oplus_{\mathrm{c} \in \mathrm{V}}\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}}\right)^{*}$ becomes a V-graded commutative associative algebra with unit.

On the other hand, set $\Omega_{k}=\prod_{r=0}^{k}\left(\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{K}\right)^{S_{r}}$; in other words, Ω_{k} is the space of $(k+1)$-tuples $\left(w_{0}, \ldots, w_{k}\right)$ where w_{r} is an S_{r}-invariant element of $\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{K}$. If $w^{\prime}, w^{\prime \prime} \in \Omega_{k}$, $w^{\prime}=\left(w_{0}^{\prime}, \ldots, w_{\mathrm{k}}^{\prime}\right), w^{\prime \prime}=\left(w_{0}^{\prime \prime}, \ldots, w_{\mathrm{k}}^{\prime \prime}\right)$, set $w^{\prime} w^{\prime \prime}=\left(w_{0}, \ldots, w_{\mathrm{k}}\right)$ where

$$
\begin{align*}
& w_{r}=\sum_{i+j=r} \frac{1}{i!j!} \operatorname{Sym}\left(w_{i}^{\prime} \boxtimes w_{j}^{\prime \prime}\right) \tag{18a}\\
& \left(w_{i}^{\prime} \boxtimes w_{j}^{\prime \prime}\right)\left(z_{1}, \ldots, z_{i+j}\right)=w_{i}^{\prime}\left(z_{1}, \ldots, z_{i}\right) \otimes w_{j}^{\prime \prime}\left(z_{i+1}, \ldots, z_{i+j}\right) \tag{18b}
\end{align*}
$$

and Sym denotes the symmetrization operator (without the factor $1 / r!$). Thus Ω_{k} becomes a commutative associative algebra with unit. Clearly $\Omega_{n, k}^{c} \subset \Omega_{k}$ and it is easy to see that $\Omega_{n, k}^{c_{1}} \cdot \Omega_{n, k}^{c_{2}} \subset \Omega_{n, k}^{c_{1}+c_{2}}$. The following result can be easily deduced from (5) or (12).

Proposition 2. The diagram

is commutative.

Denote by Der K (resp. Der \mathcal{O}) the Lie algebra of continuous derivations of K (resp. of $(\mathcal{O}$), i.e., the algebra of vector fields $f(z) d / d z$ where $f \in K$ (resp. $f \in \mathcal{O}$). The natural actions of Aut \mathcal{O} and Der K on $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ induce the actions of Aut \mathcal{O} and DerK on $\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{k}}^{\mathrm{c}}\right)^{*}:=\underset{\mathrm{n}}{\lim }$ $\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$.

On the other hand, we have the natural actions of Aut \mathcal{O} and $\operatorname{Der} K$ on Ω_{r}^{K} (change of variables and Lie derivative). Therefore Aut \mathcal{O} and Der K act on $\Omega_{k}=\prod_{r=0}^{k}\left(\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{K}\right)^{S_{r}}$. Proposition 3. (1) $\Omega_{n, k}^{c} \subset \Omega_{k}$ is invariant with respect to the action of Aut \mathcal{O} and DerK, while $\Omega_{\infty, k}^{c}:=\cup_{n=0}^{\infty} \Omega_{n, k}^{c}$ is invariant with respect to the action of DerK.
(2) The isomorphism $\Omega_{n, k}^{c} \xrightarrow{\sim}\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$ is equivariant with respect to Aut \mathcal{O} and $\operatorname{Der} \mathcal{O}$. The isomorphism $\Omega_{\infty, k}^{c} \xrightarrow{\sim}\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{k}}^{\mathrm{c}}\right)^{*}$ is equivariant with respect to Aut \mathcal{O} and DerK.

Proof. To prove statement (1), one has to show that $\left(z_{i}-z_{2}\right)^{-2} d z_{1} d z_{2} \in \Omega_{2}^{K}$ is Aut \mathcal{O} invariant and Der K-invariant modulo polydifferentials regular at $z_{1}=z_{2}$. To prove, e.g., Aut \mathcal{O}-invariance, we have to show that the expression

$$
\begin{equation*}
\left(z_{1}-z_{2}\right)^{-2} \mathrm{~d} z_{1} \mathrm{~d} z_{2}-\left(\tilde{z}_{1}-\tilde{z}_{2}\right)^{-2} \mathrm{~d} \tilde{z}_{1} \mathrm{~d} \tilde{z}_{2} \tag{19}
\end{equation*}
$$

is regular for any change of variables $\tilde{z}_{1}=\varphi\left(z_{i}\right)$. It is clear that (19) is symmetric with respect to z_{1}, z_{2} and the order of the pole of (19) at $z_{1}=z_{2}$ is not greater than 1 . Therefore there is no pole at $z_{1}=z_{2}$.

Statement (2) follows from (5).

Let G be an algebraic group over \mathbb{C} with Lie algebra \mathfrak{g}. The adjoint actions of $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$ on $\mathfrak{g}_{\mathrm{K}}$ induce the actions of $\mathrm{G}(\mathcal{O})$ and $\mathfrak{g}_{\mathcal{O}}:=\mathfrak{g} \otimes \mathcal{O}$ on $\left(\mathrm{U}_{\mathrm{k}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}\right)^{*}$ and also the actions of $G(K)$ and \mathfrak{g}_{K} on $\left(U_{k} / I_{k}\right)^{*}:=\underset{\mathrm{n}}{\lim }\left(U_{k} / I_{n, k}\right)^{*}$. On the other hand $G(K)$ and \mathfrak{g}_{k} act on $\left(\mathfrak{g}^{*}\right)^{\otimes r} \otimes \Omega_{r}^{K}$: if $g \in G(K), a \in \mathfrak{g}_{\mathrm{K}}, w \in \Omega_{r}^{K}$, then

$$
\begin{align*}
& { }^{\mathrm{g}} w\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=\left(\operatorname{Ad}_{\mathfrak{g}\left(z_{1}\right)} \otimes \cdots \otimes \operatorname{Ad}_{\mathrm{g}\left(z_{\mathrm{r}}\right)}\right)\left(w\left(z_{1}, \ldots, z_{\mathrm{r}}\right)\right) \tag{20}\\
& { }^{\mathrm{a}} w\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=\sum_{i=1}^{\mathrm{r}}\left(\mathrm{id}^{\otimes(\mathrm{i}-1)} \otimes \operatorname{ad}_{\mathfrak{a}\left(z_{\mathrm{i}}\right)} \otimes \mathrm{id}^{\otimes(\mathrm{r}-\mathrm{i})}\right)\left(w\left(z_{1}, \ldots, z_{\mathrm{r}}\right)\right) . \tag{21}
\end{align*}
$$

Let us explain that in (20) and (21) $\operatorname{Ad}_{\mathfrak{g}\left(z_{1}\right)}$ and $\operatorname{ad}_{\mathfrak{a}\left(z_{\mathfrak{i}}\right)}$ denote the operators $\mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}$ corresponding to $g\left(z_{i}\right)$ and $a\left(z_{i}\right)$ in the coadjoint representation while $i d^{\otimes(i-1)} \otimes \operatorname{ad}_{a\left(z_{i}\right)} \otimes i d^{\otimes(r-i)}$ is the operator $\left(\mathfrak{g}^{*}\right)^{\otimes r} \rightarrow\left(\mathfrak{g}^{*}\right)^{\otimes r}$ which acts as $\operatorname{ad}_{\mathfrak{a}\left(z_{i}\right)}$ on the ith tensor factor and identically on all the other ones. $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$ act on $\Omega_{k}=\prod_{r=0}^{k}\left(\left(\mathfrak{g}^{*}\right)^{r} \otimes \Omega_{r}^{K}\right)^{S_{r}}$ in the obvious way:

$$
\begin{equation*}
{ }^{\mathrm{g}}\left(w_{0}, \ldots, w_{k}\right)=\left({ }^{\mathrm{g}} w_{0}, \ldots,{ }^{\mathrm{g}} w_{\mathrm{k}}\right), \quad{ }^{\mathrm{a}}\left(w_{0}, \ldots, w_{\mathrm{k}}\right)=\left({ }^{\mathrm{a}} w_{0}, \ldots,{ }^{\mathrm{a}} w_{\mathrm{k}}\right) . \tag{22}
\end{equation*}
$$

Proposition 4. (1) $\Omega_{n, k} \subset \Omega_{k}$ is invariant with respect to $G(\mathcal{O})$ and $\mathfrak{g}_{0} ; \Omega_{\infty, k} \subset \Omega_{k}$ is invariant with respect to $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$.
(2) The isomorphism $\Omega_{n, k} \xrightarrow{\sim}\left(U_{k} / I_{n, k}\right)^{*}$ is equivariant with respect to $G(\mathcal{O})$ and \mathfrak{g}_{0}. The isomorphism $\Omega_{\infty, k} \xrightarrow[\rightarrow]{ }\left(\mathrm{U}_{\mathrm{k}} / \mathrm{I}_{\mathrm{k}}\right)^{*}$ is equivariant with respect to $\mathrm{G}(\mathrm{K})$ and $\mathfrak{g}_{\mathrm{k}}$.

Proof. Statement (1) is obvious, while (2) follows from (5).
Now we are going to formulate the analog of Proposition 4 for an arbitrary c. The group $G(K)$ acts on $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ in the following way : if $\mathrm{g} \in \mathrm{G}(\mathrm{K}), u \in \mathfrak{g}_{\mathrm{K}} \subset \hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$, then

$$
\begin{equation*}
{ }^{g} \mathfrak{u}=\operatorname{Ad}_{\mathrm{g}}(\mathfrak{u})+\operatorname{res}_{z=0} \mathrm{c}\left(u(z), g(z)^{-1} \cdot \mathrm{dg}(z)\right) \cdot \mathbf{1}, \quad{ }^{\mathrm{g}} \mathbf{1}=\mathbf{1} \tag{23}
\end{equation*}
$$

where Ad denotes the adjoint action of $G(K)$ on $\mathfrak{g}_{\mathrm{K}}$. Let us explain that if $\mathrm{g}(z)$ is a G-valued function, then $g^{-1} \cdot \mathrm{dg}\left(\right.$ resp. $\mathrm{dg} \cdot \mathrm{g}^{-1}$) denotes the pullback with respect to g of the canonical left-invariant (resp. right-invariant) \mathfrak{g}-valued differential 1 -form on G. The action of $G(K)$ on $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ defined by (23) and the adjoint action of $\mathfrak{g}_{\mathrm{K}}$ on $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ induce the actions of $G(\mathrm{~K})$ and $\mathfrak{g}_{\mathrm{K}}$ on $\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{k}}\right)^{*}$.

Now let us introduce the twisted actions of $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$ on Ω_{k} in the following way: $g \in G(K)$ sends $w \in \Omega_{k}$ to

$$
\begin{equation*}
w^{\prime}={ }^{g} w \cdot \exp \left[-c \cdot d g \cdot g^{-1}\right] \tag{24}
\end{equation*}
$$

while $a \in \mathfrak{g}_{\mathrm{K}}$ sends $w \in \Omega_{\mathrm{k}}$ to

$$
\begin{equation*}
w^{\prime \prime}={ }^{\mathrm{a}} w-w \cdot[c \cdot d a] . \tag{25}
\end{equation*}
$$

Here we use the notation $[\eta]:=(0, \eta, 0, \ldots, 0) \in \Omega_{K}$ where $\eta \in \mathfrak{g}^{*} \otimes \Omega_{K}$ and c is considered as an operator $\mathfrak{g} \rightarrow \mathfrak{g}^{*}$. Let us explain that in (24)-(25) ${ }^{g} \mathcal{W}$ and ${ }^{a} \mathcal{w}$ are defined by (20)-(22), Ω_{k} is considered as an algebra with respect to the multiplication (18), and the exponent makes sense because $[\eta] \in \Omega_{k}$ is nilpotent for all $\eta \in \mathfrak{g}^{*} \otimes \Omega_{k}$. Here are the explicit formulae for $w_{1}^{\prime}, w_{2}^{\prime}, w_{1}^{\prime \prime}, w_{2}^{\prime \prime}$ in terms of w_{0}, w_{1}, w_{2} :

$$
\begin{align*}
w_{1}^{\prime}(z)= & \operatorname{Ad}_{\mathrm{g}(z)} w_{1}(z)-w_{0} \cdot \mathrm{c} \cdot \mathrm{dg}(z) \cdot \mathrm{g}(z)^{-1} \tag{26}\\
w_{2}^{\prime}\left(z_{1}, z_{2}\right)= & \left(\operatorname{Ad}_{\mathrm{g}\left(z_{1}\right)} \otimes \operatorname{Ad}_{\mathrm{g}\left(z_{2}\right)}\right)\left(w_{2}\left(z_{1}, z_{2}\right)\right) \\
& -w_{1}\left(z_{1}\right) \otimes \mathrm{c} \cdot \mathrm{dg}\left(z_{2}\right) \cdot \mathrm{g}\left(z_{2}\right)^{-1}-\mathrm{c} \cdot \operatorname{dg}\left(z_{1}\right) \cdot \mathrm{g}\left(z_{1}\right)^{-1} \otimes w_{1}\left(z_{2}\right) \tag{27}\\
& +w_{0} \cdot \mathrm{c} \cdot \operatorname{dg}\left(z_{1}\right) \cdot \mathrm{g}\left(z_{1}\right)^{-1} \otimes \mathrm{c} \cdot \operatorname{dg}\left(z_{2}\right) \cdot \mathrm{g}\left(z_{2}\right)^{-1} \\
w_{1}^{\prime \prime}(z)= & \operatorname{ad}_{\mathfrak{a}(z)} w_{1}\left(z_{1}\right)-w_{0} \cdot \mathrm{c} \cdot \operatorname{da}(z) \tag{28}
\end{align*}
$$

$$
\begin{align*}
w_{2}^{\prime \prime}(z)= & \left(\operatorname{ad}_{a\left(z_{1}\right)} \otimes \operatorname{id}\right)\left(w_{2}\left(z_{1}, z_{2}\right)\right)+\left(\operatorname{id} \otimes \operatorname{ad}_{a\left(z_{2}\right)}\right)\left(w_{2}\left(z_{1}, z_{2}\right)\right) \\
& -w_{1}\left(z_{1}\right) \otimes \mathrm{c} \cdot \operatorname{da}\left(z_{2}\right)-\mathrm{c} \cdot \operatorname{da}\left(z_{1}\right) \otimes w_{1}\left(z_{2}\right) \tag{29}
\end{align*}
$$

Notice that (26) and (28) are essentially the usual gauge transformations. The following proposition can be proved by direct computation.
Proposition 5. (1) $\Omega_{n, k}^{c} \subset \Omega_{k}$ is invariant with respect to the twisted action of $G(\mathcal{O})$ and \mathfrak{g}_{0} defined by (24)-(25). $\Omega_{\infty, k} \subset \Omega_{k}$ is invariant with respect to the twisted action of $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$.
(2) The isomorphism $\Omega_{n, k}^{c} \xrightarrow{\Im}\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$ is equivariant with respect to the twisted action of $G(\mathcal{O})$ and $\mathfrak{g}_{\mathcal{O}}$ on $\Omega_{n, k}^{c}$. The isomorphism $\Omega_{\infty, k}^{c} \xrightarrow{\sim}\left(U_{k}^{c} / I_{k}^{c}\right)^{*}$ is equivariant with respect to the twisted action of $G(K)$ and $\mathfrak{g}_{\mathrm{K}}$ on $\Omega_{\infty, \mathrm{k}}^{\mathrm{c}}$.

Besides the adjoint action of $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ on $\mathrm{U}\left(\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}\right)^{*}$, there are two other natural actions: the "right" action of $a \in \hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}} \operatorname{maps} \lambda \in \mathrm{U}\left(\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}\right)^{*}$ to $\lambda^{\prime}(u)=\lambda(u a)$ while the "left" action of a maps λ to $\lambda^{\prime \prime}(\mathrm{u})=-\lambda(\mathrm{au})$. They induce the "right" and "left" actions of $\hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ on $\underset{\mathrm{k}}{\lim } \underset{\mathrm{n}}{\lim }\left(\mathrm{U}_{\mathrm{k}}^{\mathrm{c}} / \mathrm{I}_{\mathrm{n}, \mathrm{k}}^{\mathrm{c}}\right)^{*}$. Identifying $\underset{k}{\lim } \underset{n}{\lim }\left(U_{k}^{c} / I_{n, k}^{c}\right)^{*}$ with $\underset{k}{\lim } \Omega_{\infty, k}^{c}$ one obtains actions of $\hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ on $\underset{k}{\lim } \Omega_{\infty, k}^{c}$ which will also be called "right" and "left." Of course $1 \in \hat{\mathfrak{g}}_{\mathrm{K}}^{c}$ acts on $\underset{k}{\lim _{k}} \Omega_{\infty, k}^{c}$ identically, so we only have to determine the action of $a \in \mathfrak{g}_{\mathrm{K}} \subset \hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ on $\underset{\mathrm{k}}{\lim _{\overleftarrow{K}}} \Omega_{\infty, k}^{c}$.
Proposition 6. The "right" (resp. "left") action of $a \in \mathfrak{g}_{K} \subset \hat{\mathfrak{g}}_{\mathrm{K}}^{\mathrm{c}}$ sends $w=\left(w_{0}, w_{1}, \ldots\right)$ $\in \lim _{\mathrm{k}} \Omega_{\infty, k}^{c}$ to $\left(\overline{w_{0}}, \overline{w_{1}}, \ldots\right)\left(\right.$ resp. to $\left.\left(\widetilde{w_{0}}, \widetilde{w_{1}}, \ldots\right)\right)$ where

$$
\begin{align*}
& \overline{w_{\mathrm{r}}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=\underset{z_{\mathrm{r}+1}=0}{\operatorname{res}} \eta_{\mathrm{r}+1}\left(z_{1}, \ldots, z_{\mathrm{r}+1}\right) \tag{30}\\
& \widetilde{w_{\mathrm{r}}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)=-\overline{w_{\mathrm{r}}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)-\sum_{i=1}^{r} \underset{z_{\mathrm{r}+1}=z_{\mathrm{i}}}{\operatorname{res}} \eta_{\mathrm{r}+1}\left(z_{1}, \ldots, z_{\mathrm{r}+1}\right) \tag{31}
\end{align*}
$$

and $\eta_{r+1}\left(z_{1}, \ldots, z_{r+1}\right)$ is the polydifferential with values in $\left(\mathfrak{g}^{*}\right)^{\otimes r}$ obtained as a scalar product of $w_{r+1}\left(z_{1}, \ldots, z_{r+1}\right)$ by $a\left(z_{r+1}\right)$ with respect to the last tensor factor.

Proof. (30) follows immediately from (5). On the other hand, if ($\overline{w_{0}}, \overline{w_{1}}, \ldots$) and ($\widetilde{w_{0}}, \widetilde{w_{1}}, \ldots$) are respectively the results of the "right" and "left" action of $a \in \mathfrak{g}_{\mathrm{K}}$ on w, then ($\overline{w_{0}}+\widetilde{w_{0}}, \overline{w_{1}}+$ $\widetilde{w_{1}}, \ldots$) is the result of the "adjoint" action of a on w. So according to Proposition 5 and formula (25) we have

$$
\begin{aligned}
\overline{w_{\mathrm{r}}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)+\widetilde{w_{\mathrm{r}}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)= & \sum_{i=1}^{\mathrm{r}}\left(\mathrm{id}^{\otimes(i-1)} \otimes \operatorname{ad}_{\mathrm{a}\left(z_{\mathrm{i}}\right)} \otimes \mathrm{id}^{\otimes(\mathrm{r}-\mathrm{i})}\right)\left(w_{\mathrm{r}}\left(z_{1}, \ldots, z_{\mathrm{r}}\right)\right) \\
& -\frac{1}{(\mathrm{r}-1)!} \operatorname{Sym}\left(w_{\mathrm{r}-1}\left(z_{1}, \ldots, z_{\mathrm{r}-1}\right) \otimes \mathrm{c} \cdot \operatorname{da}\left(z_{\mathrm{r}}\right)\right)
\end{aligned}
$$

where Sym has the same meaning as in (18a) and c is considered as an operator $\mathfrak{g} \rightarrow \mathfrak{g}^{*}$. This is equivalent to (31) by virtue of (4).

Here is another proof of (31). According to (5) we have to prove that if $\widetilde{\mathcal{w}_{r}}$ is defined by (31), then

$$
\begin{align*}
-\underset{z_{1}=0}{\operatorname{res}} \cdots & \underset{z_{r}=0}{\operatorname{res}}\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right), \widetilde{w_{r}}\left(z_{1}, \ldots, z_{r}\right)\right) \\
& =\underset{z_{1}=0}{\operatorname{res}} \cdots \underset{z_{r+1}=0}{\operatorname{res}}\left(a\left(z_{1}\right) \otimes u_{1}\left(z_{2}\right) \otimes \cdots \otimes u_{r}\left(z_{r+1}\right), w_{r+1}\left(z_{1}, \ldots, z_{r+1}\right)\right) \tag{32}
\end{align*}
$$

for all $u_{1}, \ldots, u_{r} \in \mathfrak{g}_{\mathrm{K}}$. The right-hand side of (32) is equal to $\operatorname{res}_{z_{\mathrm{r}+1}=0} \operatorname{res}_{z_{1}=0} \cdots \operatorname{res}_{z_{\mathrm{r}}=0} \xi$ $\left(z_{1}, \ldots, z_{r+1}\right)$ where $\xi\left(z_{1}, \ldots, z_{r+1}\right)=\left(u_{1}\left(z_{1}\right) \otimes \cdots \otimes u_{r}\left(z_{r}\right) \otimes a\left(z_{r+1}\right), w_{r+1}\left(z_{1}, \ldots, z_{r+1}\right)\right)$. So (32) is equivalent to the formula $\operatorname{res}_{z_{1}=0} \cdots \operatorname{res}_{z_{r}=0} \operatorname{res}_{z_{r+1}=0} \xi\left(z_{1}, \ldots, z_{r+1}\right)+\sum_{i=1}^{r} \operatorname{res}_{z_{1}=0} \ldots$ $\operatorname{res}_{z_{\mathrm{r}}=0} \operatorname{res}_{z_{\mathrm{r}+1}=z_{\mathrm{i}}} \xi\left(z_{1}, \ldots, z_{\mathrm{r}+1}\right)=\operatorname{res}_{z_{\mathrm{r}+1}=0} \operatorname{res}_{z_{1}=0} \cdots \operatorname{res}_{z_{\mathrm{r}}=0} \xi\left(z_{1}, \ldots, z_{\mathrm{r}+1}\right)$ which is easily deduced from Parshin's residue formula (10).

Acknowledgments

The authors are grateful to Bonnie Friedman for careful typing of the manuscript. This research was partially supported by NSF grant DMS 9214772 and a grant from the Russian foundation "Matematika."

References

[P] A. N. Parshin, On the arithmetic of two-dimensional schemes, I. Distributions and residues, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), 736-773 (in Russian).

Beilinson: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Drinfeld: Physico-Technical Institute of Low Temperatures, Lenin Avenue 47, Kharhov-164, Ukraine

