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Let g be a finite-dimensional algebra over C with a fixed invariant symmetric bilinear

form c(x, y). (Readers accustomed to traditional notation may assume that c(x, y) = c·(x, y)

where (x, y) is an invariant scalar product on g and c ∈ C is the “level”.) Set O = C[[z]],

K = C((z)), m = zC[[z]] ⊂ O, and gK = g ⊗ K. We consider gK as a Lie algebra over C. The

2-cocycle B : gK × gK → C given by

B(u, v) = res
z=0

c(u′(z), v(z))dz (1)

defines a central extension of gK which will be denoted ĝc
K. As a vector space ĝc

K is the

direct sum of gK and a one-dimensional vector space generated by an element 1. The

commutator in ĝc
K is denoted by [ · , · ]c and defined by

[u, v]c = [u, v] + B(u, v) · 1 for u, v ∈ gK (2a)

[1, u] = 0 for u ∈ ĝ
c
K. (2b)

Set UcgK = Uĝc
K/(1−1) where Uĝc

K is the universal enveloping algebra of ĝc
K. Usually

we will write Uc instead of UcgK. The standard filtration of Uĝc
K induces a filtration Uc

•
on Uc, where Uc

k is the vector space generated by products of ≤ k elements of gK. Let

Ic
n be the left ideal of Uc generated by g ⊗ mn ⊂ gK, n ≥ 0. Set Ic

n,k = Ic
n ∩ Uc

k. Using the

Poincaré-Birkhoff-Witt theorem and the fact that g ⊗ mn is a subalgebra of ĝc
K it is easy

to show that

Ic
n,k = Uc

k−1 · (g ⊗ m
n). (3)

If c = 0 then UcgK = UgK. In this case we write Uk, In, In,k instead of Uc
k, I

c
n, Ic

n,k.
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2 Beilinson and Drinfeld

In representation theory one usually considers the completion

Ûc := lim−→
k

lim←−
n

Uc
k/Ic

n,k

rather than Uc itself. The goal of this paper is to describe the dual space (Ûc)∗. In order to

do this it is enough to describe the space (Uc
k/In,k)∗ for all n and k and the natural mappings

between them. This is easy for k = 1. Indeed, since Uc
1/Ic

n,1 = C ⊕ (g ⊗ (K/mn)), we have

(Uc
1/Ic

n,1)∗ = C⊕ (g∗ ⊗ (K/mn)∗) and (K/mn)∗ can be identified with the space of differentials

w = f(z)dz where f ∈ z−n
C[[z]] ⊂ K. (A differential w defines a linear functional ϕ →

resz=0 ϕw, ϕεK.)

If k > 1 we need some notation. Let ΩO be the module of continuous differentials

of O; it consists of expressions f(z)dz, f ∈ O. Set ΩK = ΩO ⊗O K. Denote by Or (resp. ΩO
r )

the completed tensor product of r copies of O (resp. of ΩO). Set ΩK
r = ΩO

r ⊗Or Kr where

Kr is the field of fractions of Or. We identify Or with C[[z1, . . . , zr]] and write elements

of ΩK
r as f(z1, . . . , zr)dz1 . . . dzr where f belongs to the field of fractions of C[[z1, . . . , zr]].

Elements of ΩK
r will be called polydifferentials. The only difference between polydiffer-

entials and differential r-forms is that an element σ of the symmetric group Sr is supposed

to map f(z1, . . . , zr)dz1 · · · dzr to f(zσ(1), . . . , zσ(r))dz1 · · · dzr while σ(f(z1, . . . , zr)dz1 ∧· · ·∧dzr) =
(−1)l(σ)f(zσ(1), . . . , zσ(r))dz1 ∧ · · · ∧ dzr where l(σ) is the number of inversions.

We are going to construct a canonical isomorphism between (Uc
k/Ic

n,k)∗ and the

following space Ωc
n,k.

Definition. Ωc
n,k is the set of (k + 1)-tuples (w0, . . . , wk), wr ∈ (g∗)⊗r ⊗ ΩK

r , such that:

(1) wr is invariant with respect to the action of the symmetric group Sr (Sr acts

both on (g∗)⊗r and on ΩK
r );

(2) wr has poles of order ≤ n at the hyperplanes zi = 0, 1 ≤ i ≤ r, poles of order

≤ 2 at the hyperplanes zi = zj, 1 ≤ i < j ≤ r, and no other poles;

(3) if wr(z1, . . . , zr) = fr(z1, . . . , zr)dz1 · · · dzr, r ≥ 2, then

fr(z1, . . . , zr) = fr−2(z1, . . . , zr−2) ⊗ c

(zr−1 − zr)2
+ ϕ∗ (

fr−1(z1, . . . , zr−1)
)

zr−1 − zr

+ · · · . (4)

Here c is considered as an element of g∗ ⊗g∗, ϕ∗ : (g∗)⊗(r−1) → (g∗)⊗r is dual to the mapping

ϕ : g⊗r → g⊗(r−1) given by ϕ(a1 ⊗ · · · ⊗ ar) = a1 ⊗ · · · ⊗ ar−2 ⊗ [ar−1, ar], and the dots in (4)

denote an expression which does not have a pole at the generic point of the hyperplane

zr−1 = zr.

Let us explain that in (4) we consider fr as a function with values in (g∗)⊗r.

The space Ωc
n,k is equipped with the topology induced by the embedding Ωc

n,k↪→∏
0≤r≤k(g∗)⊗r ⊗ ΩO

r given by (w0, . . . , wk) → (η0, . . . , ηk), ηr = ∏
iz

n
i · ∏

i< j(zi − zj)2 · wr.
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Affine Kac-Moody Algebras and Polydifferentials 3

We will denote Ωc
n,k for c = 0 simply by Ωn,k.

Theorem. (1) There is a pairing 〈, 〉 : Uc
k × Ωc

n,k → C such that, if 0 ≤ r ≤ k, u1, . . . , ur ∈
gK, w = (w0, . . . , wk) ∈ Ωc

n,k, then

〈u1 · · · ur, w〉 = res
z1=0

· · · res
zr=0

(
u1(z1) ⊗ · · · ⊗ ur(zr), wr(z1, . . . , zr)

)
. (5)

(2) The pairing (5) defines a topological isomorphism Ωc
n,k →̃ (Uc

k/Ic
n,k)∗ where the

topology on Uc
k/Ic

n,k is assumed to be discrete.

Let us explain that in (5) u1(z1) ⊗ · · · ⊗ ur(zr) is a function with values in g⊗r, wr

is a polydifferential with values in (g∗)⊗r, (u1(z1) ⊗ · · · ⊗ ur(zr), wr(z1, . . . , zr)) is a scalar-

valued polydifferential, and the notation resz1=0 · · · reszr=0 means that we first compute

the residue with respect to zr considering z1, . . . , zr−1 as parameters, and then we compute

the residue with respect to zr−1, etc. For instance, to compute

res
z1=0

res
z2=0

ψ(z1, z2)dz1 dz2,

we have to consider ψ as an element of C((z1))((z2)) and find the coefficient a−1,−1 in the

corresponding power series

ψ(z1, z2) =
∞∑

j=−m

z
j

2 ·
∞∑

i=−N(m)

aij z
i
1. (6)

By abuse of language, (6) will be called the power series decomposition of ψ in the domain

|z1| � |z2|. Notice that if ψ(z1, z2) is meromorphic, then

res
z1=0

res
z2=0

ψ(z1, z2)dz1 dz2 = 1

(2πi)2

∮

|z1|=ε1

∮

|z2|=ε2

ψ(z1, z2)dz1 dz2, 1 � ε1 � ε2 > 0.

Proof of the theorem. To prove statement (1) we have to show that

res
z1=0

· · · res
zr=0

(
u1(z1) ⊗ · · · ⊗ ui−1(zi−1) ⊗ (ui(zi) ⊗ ui+1(zi+1)

− ui+1(zi) ⊗ ui(zi+1)) ⊗ ui+2(zi+2) ⊗ · · · ⊗ ur(zr), wr(z1, . . . , zr)
)

= res
z1=0

· · · res
zr−1=0

(u1(z1) ⊗ · · · ⊗ ui−1(zi−1) ⊗ [ui(zi), ui+1(zi)]

⊗ ui+2(zi+1) ⊗ · · · ⊗ ur(zr−1), wr−1(z1, . . . , zr−1))

+ res
z=0

c(u′
1(z), u2(z))dz · res

z1=0
· · · res

zr−2=0
(u1(z1) ⊗ · · · ⊗ ui−1(zi−1)

⊗ ui+2(zi) ⊗ · · · ⊗ ur(zr−2), wr−2(z1, . . . , zr−2)). (7)
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4 Beilinson and Drinfeld

Since wr is Sr-invariant, the left-hand side of (7) can be rewritten as

res
z1=0

· · · res
zi−1=0

res
zi=0

res
zi+1=0

η(z1, . . . , zi+1)

− res
z1=0

. . . res
zi−1=0

res
zi+1=0

res
zi=0

η(z1, . . . , zi+1) (8)

where η(z1, . . . , zi+1) = reszi+2=0 · · · reszr=0(u1(z1) ⊗ · · · ⊗ ur(zr), wr(z1, . . . , zr)). η has poles

only at the hyperplanes zk = 0, 1 ≤ k ≤ i + 1, and zk = zl, 1 ≤ k < l ≤ i + 1. Therefore

res
zi=0

res
zi+1=0

η(z1, . . . , zi+1) − res
zi+1=0

res
zi=0

η(z1, . . . , zi+1)

= − res
zi=0

res
zi+1=zi

η(z1, . . . , zi+1) (9)

where the right-hand side is understood as follows: we first consider zi as a parameter,

compute the residue at zi+1 = zi, and then compute the residue at zi = 0. Let us explain

that if η is meromorphic, (9) is easily obtained by expressing residues as Cauchy integrals,

while in the general case one can either prove (9) by direct computations or deduce it from

Parshin’s residue formula [P, §1, Proposition 7] which asserts that, if f belongs to the field

of fractions of C[[z, u]], then

∑
C

res
z=u=0

res
C

f(z, u)dz ∧ du = 0 (10)

where the summation is over all irreducible “formal curves” ϕ(z, u) = 0, ϕ ∈ C[[z, u]].

It is easy to deduce from (4) that

res
zi+1=zi

η(z1, . . . , zi+1) = c(ui(zi), u
′
i+1(zi)) · res

zi+2=0
· · · res

zr=0
(u1(z1)

⊗ · · · ⊗ ui−1(zi−1) ⊗ ui+2(zi+2) ⊗ · · ·
⊗ ur(zr), wr−2(z1, . . . , zi−1, zi+2, . . . , zr))

− res
zi+1=0

· · · res
zr−1=0

(u1(z1) ⊗ · · · ⊗ ui−1(zi−1)

⊗ [ui(zi), ui+1(zi)] ⊗ ui+2(zi+1) ⊗ · · ·
⊗ ur(zr−1), wr−1(z1, . . . , zr−1)). (11)

It follows from (9) and (11) that (8) is equal to the right-hand side of (7). So we have proved

the statement (1) of the theorem.

Since the order of the pole of wr at zr = 0 is ≤ n, the right-hand side of (5) vanishes

provided ur ∈ g⊗mn. Taking into account (3), we see that the pairing (5) defines a mapping

ψ : Ωc
n,k → (Uc

k/Ic
n,k)∗. If (w0, . . . , wk) ∈ Ωc

n,k and λ = ψ(w0, . . . , wk), then (5) shows that
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Affine Kac-Moody Algebras and Polydifferentials 5

wr(z1, . . . , zr) has the following power series decomposition in the domain |z1| � |z2| �
· · · � |zr|:

wr(z1, . . . , zr) =
∑

l1,...,lr

∑
i1,...,ir

λ(e(l1)
i1

· · · e
(lr)
ir

)ei1 ⊗ · · · ⊗ eir

× z
−l1−1
1 · · · z−lr−1

r dz1 · · · dzr. (12)

Here {ei} is a basis of g∗ and e
(l)
i = eiz

l ∈ gK ⊂ Uc where ei is the dual basis of g. (12) implies

that ψ is injective. To prove the surjectivity of ψ we must show that for any λ ∈ (Uc
k/Ic

n,k)∗

the (k + 1)-tuple (w0, . . . , wk) defined by (12) belongs to Ωc
n,k. Clearly, wr = frdz1 · · · dzr

where fr ∈ (g∗)⊗r ⊗ C((z1)) · · · ((zr)). We must first of all prove that fr ∈ (g∗)⊗r ⊗ Kr where Kr

is the field of fractions of C[[z1, . . . , zr]]. (This may be considered as a kind of analytical

continuation of the right-hand side of (12).) We also have to verify the properties (1)–(3)

from the definition of Ωc
n,k.

Let us introduce the “fields” Ai(ζ) defined by

Ai(ζ) =
∑

l

e
(l)
i ζ−l−1 (13)

where e
(l)
i has the same meaning as in (12). (Since e

(l)
i = eiz

l we can write heuristically

Ai(ζ) = δ(z−ζ)ei where the “δ-function” is defined by δ(z−ζ) = ∑
zlζ−l−1.) Ai(ζ) is a formal

power series in ζ with coefficients in gK ⊂ Uc. Now we can rewrite (12) as

wr(z1, . . . , zr) =
∑

i1,...,ir

λ(Ai1 (z1) · · · Air (zr)) · (ei1 ⊗ · · · ⊗ eir )dz1 · · · dzr. (14)

Since [e(l)
i , e

(m)
j ] = lci j δl,−m + ∑

f
q

i j e
(l+m)
q , where ci j is the matrix of the bilinear form c and

f
q

i j are the structure constants of g, we have [Ai(ζ), Aj(ν)] = ci j δ
′(ν−ζ)+∑

f
q

i j Aq(ζ) ·δ(ζ−ν)

and therefore

(ζ − ν)2Ai(ζ) Aj(ν) = (ζ − ν)2Aj(ν) Ai(ζ). (15)

Set D(z1, . . . , zr) = ∏
i< j(zi − zj)2. It follows from (14) and (15) that the formal power series

w̃r(z1, . . . , zr) := D(z1, . . . , zr) wr(z1, . . . , zr) is Sr-invariant. Since λ : Uc → C is trivial on

Ic
n,k, (14) implies that the power series wr(z1, . . . , zr) does not contain zm

r for m < −n. The

same is true for w̃r(z1, . . . , zr), but since w̃r is Sr-invariant we see that for any i ∈ {1, . . . , r}
and m < −n, w̃r does not contain zm

i . So we have proved that wr = fr dz1 · · · dzr where

fr ∈ (g∗)⊗r ⊗ Kr and that w0, . . . , wk have the properties (1) and (2) from the definition of
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6 Beilinson and Drinfeld

Ωc
n,k. The property (3) follows from the “operator product expansion”

Ai(ζ) Aj(ν) = ci j

(ζ − ν)2
+

∑
q

f
q

i j

Aq(ζ)

ζ − ν
+ · · · , |ζ| � |ν|. (16)

Here |ζ| � |ν| is just a heuristic way of saying that (ζ − ν)−1 := ∑∞
k=0 ζ−k−1 νk, (ζ − ν)−2 :=∑∞

k=1 k ζ−k−1 νk−1 and the dots in (16) denote a formal series
∑

i, j ai j ζ
i νj such that aij ∈ Uc

and for any n ≥ 0 there is an M with the property that aij ∈ Ic
n provided i < −M or j < −M.

From the construction of ψ : Ωc
n,k → (Uc

k/Ic
n,k)∗ and ψ−1 : (Uc

k/Ic
n,k)∗ → Ωc

n,k, it is

clear that both mappings are continuous.

Remark. Our theorem has a global counterpart. In the case c = 0 it can be formulated as

follows. Let G be an affine algebraic group over C, X a connected smooth projective curve

over C, F a G-bundle on X such that Aut F is finite, S = Spec B the base of the universal

deformation of F, and m the maximal ideal of B. Then B/mk has the following description.

Let gF be the vector bundle on X corresponding to F and the adjoint representation of X.

Let Ωk(F) be the space of (k+1)-tuples (w0, . . . , wk) where wr is a symmetric rational poly-

differential on Xr with values in g∗
F× · · · × g∗

F having only simple poles at the diagonals

xi = xj with residues given by formula (4) for c = 0. Then B/mk is canonically isomorphic

to Ωk(F). The proof will be given elsewhere.

Let us show that the isomorphism Ωc
n,k → (Uc

k/Ic
n,k)∗ is compatible with various

structures on Ωc
n,k and (Uc

k/Ic
n,k)∗. First of all, the diagrams

Ωc
n,k ↪→ Ωc

n+1,k Ωc
n,k+1 −→ Ωc

n,k��
��

��
��

(Uc
k/Ic

n,k)∗ ↪→ (Uc
k/Ic

n+1,k)∗ (Uc
k+1/Ic

n,k+1)∗ −→ (Uc
k/Ic

n,k)∗

are commutative. Since the mapping Uc
k/Ic

n,k → Uc
k+1/Ic

n,k+1 is injective, we obtain the

following result.

Proposition 1. The mapping Ωc
n,k+1 → Ωc

n,k is surjective.

Remarks. (1) The above proof of Proposition 1 makes use of formula (3) which follows

from the Poincaré-Birkhoff-Witt theorem.

(2) Here is a sketch of a geometric proof of Proposition 1. Let (w0, . . . , wk) ∈ Ωc
n,k.

We must show that there is a wk+1 ∈ (g∗)⊗(k+1) ⊗ΩK
k+1 such that (w0, . . . , wk+1) ∈ Ωc

n,k+1. Set

V = Spec C[[z1, . . . , zk+1]]. Let ∆ij ⊂ V be the divisor zi = zj. Denote by Y the union of all

subschemes of V of codimension 3 having the form ∆ij ∩∆rs ∩∆tu. Since H1(V\Y,OV ) = 0, it

is enough to show that for any (z1, . . . , zk+1) ∈ V\Y there is an wk+1 which has the desired

properties in a neighborhood of (z1, . . . , zk). There are two nontrivial cases: (1) zi = zj,
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Affine Kac-Moody Algebras and Polydifferentials 7

zr = zs, i �= j �= r �= s, (2) zi = zj = zl, i �= j �= l. In the second case the existence of wk+1

follows from the Jacobi identity in g.

Now consider the symbol epimorphism (Uc
k/Ic

n,k)∗ → Symk(gK/(g ⊗ mn)). It induces

an injection Γk((gK/(g ⊗ mn))∗)↪→(Uc
k/Ic

n,k)∗ where Γk denotes the symmetric part of the k-

tensor power. On the other hand we have a canonical isomorphism (gK/(g ⊗ mn))∗ →̃
g∗ ⊗ Ω

(n)
K where Ω

(n)
K is the space of differentials η ∈ ΩK having a pole of order ≤ n at the

point z = 0. It is easy to see that the diagram

Γk((gK/(g ⊗ mn))∗) ↪→ (Uc
k/Ic

n,k)∗��
��

Γk(g∗ ⊗ Ω
(n)
K )

f
↪→ Ωc

n,k

(17)

is commutative, where f is the linear mapping such that for any η ∈ g∗ ⊗ Ω
(n)
K one has

f(η⊗k) = (w0, . . . , wk), wk(z1, . . . , zk) = η(z1) ⊗ · · · ⊗ η(zk), wr = 0 for r < k.

Denote by V the space of invariant symmetric bilinear forms on g. If c1, c2 ∈ V , we

have the comultiplication homomorphism ∆ : Uc1+c2 → Uc1 ⊗Uc2 such that ∆(u) = u⊗1+
1 ⊗ u for u ∈ gK ⊂ Uc1+c2 . It induces a mapping U

c1+c2
k /I

c1+c2
n,k → (Uc1

k /I
c1
n,k) ⊗ (Uc2

k /I
c2
n,k) and

therefore a mapping (Uc1
k /I

c1
n,k)∗ ⊗ (Uc2

k /I
c2
n,k)∗ → (Uc1+c2

k /I
c1+c2
n,k )∗. So ⊕c∈V (Uc

k/Ic
n,k)∗ becomes

a V-graded commutative associative algebra with unit.

On the other hand, set Ωk = ∏k

r=0((g∗)⊗r ⊗ΩK
r )Sr ; in other words, Ωk is the space of

(k+1)-tuples (w0, . . . , wk) where wr is an Sr-invariant element of (g∗)⊗r ⊗ΩK
r . If w′, w′′ ∈ Ωk,

w′ = (w′
0, . . . , w

′
k), w′′ = (w′′

0, . . . , w
′′
k), set w′w′′ = (w0, . . . , wk) where

wr =
∑

i+ j=r

1

i! j!
Sym (w′

i× w′′
j ) (18a)

(w′
i× w′′

j )(z1, . . . , zi+ j) = w′
i(z1, . . . , zi) ⊗ w′′

j (zi+1, . . . , zi+ j) (18b)

and Sym denotes the symmetrization operator (without the factor 1/r!). Thus Ωk becomes

a commutative associative algebra with unit. Clearly Ωc
n,k ⊂ Ωk and it is easy to see that

Ω
c1
n,k · Ω

c2
n,k ⊂ Ω

c1+c2
n,k . The following result can be easily deduced from (5) or (12).

Proposition 2. The diagram

(Uc1
k /I

c1
n,k)∗ ⊗ (Uc2

k /I
c2
n,k)∗ −→ (Uc1+c2

k /I
c1+c2
n,k )∗��

��
Ω

c1
n,k ⊗ Ω

c2
n,k −→ Ω

c1+c2
n,k

is commutative.
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8 Beilinson and Drinfeld

Denote by Der K (resp. Der O) the Lie algebra of continuous derivations of K (resp.

of O), i.e., the algebra of vector fields f(z)d/dz where f ∈ K (resp. f ∈ O). The natural

actions of Aut O and Der K on ĝc
K induce the actions of Aut O and Der K on (Uc

k/Ic
k)∗ := lim−→

n

(Uc
k/Ic

n,k)∗.

On the other hand, we have the natural actions of Aut O and Der K on ΩK
r (change

of variables and Lie derivative). Therefore Aut O and Der K act on Ωk = ∏k

r=0((g∗)⊗r⊗ΩK
r )Sr .

Proposition 3. (1) Ωc
n,k ⊂ Ωk is invariant with respect to the action of Aut O and Der K,

while Ωc
∞,k := ∪∞

n=0Ω
c
n,k is invariant with respect to the action of Der K.

(2) The isomorphism Ωc
n,k →̃ (Uc

k/Ic
n,k)∗ is equivariant with respect to Aut O and

Der O. The isomorphism Ωc
∞,k →̃ (Uc

k/Ic
k)∗ is equivariant with respect to Aut O and Der K.

Proof. To prove statement (1), one has to show that (zi − z2)−2dz1dz2 ∈ ΩK
2 is Aut O-

invariant and Der K-invariant modulo polydifferentials regular at z1 = z2. To prove, e.g.,

Aut O-invariance, we have to show that the expression

(z1 − z2)−2dz1dz2 − (z̃1 − z̃2)−2dz̃1dz̃2 (19)

is regular for any change of variables z̃1 = ϕ(zi). It is clear that (19) is symmetric with

respect to z1, z2 and the order of the pole of (19) at z1 = z2 is not greater than 1. Therefore

there is no pole at z1 = z2.

Statement (2) follows from (5).

Let G be an algebraic group over C with Lie algebra g. The adjoint actions of G(K)

and gK on gK induce the actions of G(O) and gO := g⊗O on (Uk/In,k)∗ and also the actions of

G(K) and gK on (Uk/Ik)∗ := lim−→
n

(Uk/In,k)∗. On the other hand G(K) and gK act on (g∗)⊗r ⊗ ΩK
r :

if g ∈ G(K), a ∈ gK, w ∈ ΩK
r , then

gw(z1, . . . , zr) = (Adg(z1) ⊗ · · · ⊗ Adg(zr))(w(z1, . . . , zr)) (20)

aw(z1, . . . , zr) =
r∑

i=1

(id⊗(i−1) ⊗ ada(zi) ⊗ id⊗(r−i))(w(z1, . . . , zr)). (21)

Let us explain that in (20) and (21) Adg(z1) and ada(zi) denote the operators g∗ → g∗ corre-

sponding to g(zi) and a(zi) in the coadjoint representation while id⊗(i−1) ⊗ ada(zi) ⊗ id⊗(r−i)

is the operator (g∗)⊗r → (g∗)⊗r which acts as ada(zi) on the ith tensor factor and identically

on all the other ones. G(K) and gK act on Ωk = ∏k

r=0((g∗)r ⊗ ΩK
r )Sr in the obvious way:

g(w0, . . . , wk) = (gw0, . . . ,
gwk), a(w0, . . . , wk) = (aw0, . . . ,

awk). (22)
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Proposition 4. (1) Ωn,k ⊂ Ωk is invariant with respect to G(O) and gO; Ω∞,k ⊂ Ωk is

invariant with respect to G(K) and gK.

(2) The isomorphism Ωn,k →̃ (Uk/In,k)∗ is equivariant with respect to G(O) and gO.

The isomorphism Ω∞,k →̃ (Uk/Ik)∗ is equivariant with respect to G(K) and gK.

Proof. Statement (1) is obvious, while (2) follows from (5).

Now we are going to formulate the analog of Proposition 4 for an arbitrary c. The

group G(K) acts on ĝc
K in the following way : if g ∈ G(K), u ∈ gK ⊂ ĝc

K, then

gu = Adg(u) + res
z=0

c(u(z), g(z)−1 · dg(z)) · 1, g
1 = 1 (23)

where Ad denotes the adjoint action of G(K) on gK. Let us explain that if g(z) is a G-valued

function, then g−1 ·dg (resp. dg·g−1) denotes the pullback with respect to g of the canonical

left-invariant (resp. right-invariant) g-valued differential 1-form on G. The action of G(K)

on ĝc
K defined by (23) and the adjoint action of gK on ĝc

K induce the actions of G(K) and gK

on (Uc
k/Ik)∗.

Now let us introduce the twisted actions of G(K) and gK on Ωk in the following

way: g ∈ G(K) sends w ∈ Ωk to

w′ = gw · exp[−c · dg · g−1] (24)

while a ∈ gK sends w ∈ Ωk to

w′′ = aw − w · [c · da]. (25)

Here we use the notation [η] := (0, η, 0, . . . , 0) ∈ ΩK where η ∈ g∗⊗ΩK and c is considered as

an operator g → g∗. Let us explain that in (24)–(25) gw and aw are defined by (20)–(22), Ωk is

considered as an algebra with respect to the multiplication (18), and the exponent makes

sense because [η] ∈ Ωk is nilpotent for all η ∈ g∗ ⊗ ΩK. Here are the explicit formulae for

w′
1, w

′
2, w

′′
1, w

′′
2 in terms of w0, w1, w2:

w′
1(z) = Adg(z)w1(z) − w0 · c · dg(z) · g(z)−1 (26)

w′
2(z1, z2) = (Adg(z1) ⊗ Adg(z2))(w2(z1, z2))

− w1(z1) ⊗ c · dg(z2) · g(z2)−1 − c · dg(z1) · g(z1)−1 ⊗ w1(z2) (27)

+ w0 · c · dg(z1) · g(z1)−1 ⊗ c · dg(z2) · g(z2)−1

w′′
1(z) = ada(z)w1(z1) − w0 · c · da(z) (28)
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w′′
2(z) = (ada(z1) ⊗ id)(w2(z1, z2)) + (id ⊗ ada(z2))(w2(z1, z2))

− w1(z1) ⊗ c · da(z2) − c · da(z1) ⊗ w1(z2) (29)

Notice that (26) and (28) are essentially the usual gauge transformations.

The following proposition can be proved by direct computation.

Proposition 5. (1) Ωc
n,k ⊂ Ωk is invariant with respect to the twisted action of G(O) and

gO defined by (24)–(25). Ω∞,k ⊂ Ωk is invariant with respect to the twisted action of G(K)

and gK.

(2) The isomorphism Ωc
n,k →̃ (Uc

k/Ic
n,k)∗ is equivariant with respect to the twisted

action of G(O) and gO on Ωc
n,k. The isomorphism Ωc

∞,k →̃ (Uc
k/Ic

k)∗ is equivariant with

respect to the twisted action of G(K) and gK on Ωc
∞,k.

Besides the adjoint action of ĝc
K on U(ĝc

K)∗, there are two other natural actions: the

“right” action of a ∈ ĝc
K maps λ ∈ U(ĝc

K)∗ to λ′(u) = λ(ua) while the “left” action of a maps

λ to λ′′(u) = −λ(au). They induce the “right” and “left” actions of ĝc
K on lim←−

k

lim−→
n

(Uc
k/Ic

n,k)∗.

Identifying lim←−
k

lim−→
n

(Uc
k/Ic

n,k)∗ with lim←−
k

Ωc
∞,k one obtains actions of ĝc

K on lim←−
k

Ωc
∞,k which

will also be called “right” and “left.” Of course 1 ∈ ĝc
K acts on lim←−

k

Ωc
∞,k identically, so we

only have to determine the action of a ∈ gK ⊂ ĝc
K on lim←−

k

Ωc
∞,k.

Proposition 6. The “right” (resp. “left”) action of a ∈ gK ⊂ ĝc
K sends w = (w0, w1, . . .)

∈ lim←−
k

Ωc
∞,k to (w0, w1, . . .) (resp. to (w̃0, w̃1, . . .)) where

wr(z1, . . . , zr) = res
zr+1=0

ηr+1(z1, . . . , zr+1) (30)

w̃r(z1, . . . , zr) = −wr(z1, . . . , zr) −
r∑

i=1

res
zr+1=zi

ηr+1(z1, . . . , zr+1) (31)

and ηr+1(z1, . . . , zr+1) is the polydifferential with values in (g∗)⊗r obtained as a scalar prod-

uct of wr+1(z1, . . . , zr+1) by a(zr+1) with respect to the last tensor factor.

Proof. (30) follows immediately from (5). On the other hand, if (w0, w1, . . .) and (w̃0, w̃1, . . .)

are respectively the results of the “right” and “left” action of a ∈ gK on w, then (w0+w̃0, w1+
w̃1, . . .) is the result of the “adjoint” action of a on w. So according to Proposition 5 and

formula (25) we have

wr(z1, . . . , zr) + w̃r(z1, . . . , zr) =
r∑

i=1

(id⊗(i−1) ⊗ ada(zi) ⊗ id⊗(r−i))(wr(z1, . . . , zr))

− 1

(r − 1)!
Sym (wr−1(z1, . . . , zr−1) ⊗ c · da(zr))
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where Sym has the same meaning as in (18a) and c is considered as an operator g → g∗.

This is equivalent to (31) by virtue of (4).

Here is another proof of (31). According to (5) we have to prove that if w̃r is defined

by (31), then

− res
z1=0

· · · res
zr=0

(u1(z1) ⊗ · · · ⊗ ur(zr), w̃r(z1, . . . , zr))

= res
z1=0

· · · res
zr+1=0

(a(z1) ⊗ u1(z2) ⊗ · · · ⊗ ur(zr+1), wr+1(z1, . . . , zr+1)) (32)

for all u1, . . . , ur ∈ gK. The right-hand side of (32) is equal to reszr+1=0resz1=0 · · · reszr=0ξ

(z1, . . . , zr+1) where ξ(z1, . . . , zr+1) = (u1(z1) ⊗ · · · ⊗ ur(zr) ⊗ a(zr+1), wr+1(z1, . . . , zr+1)). So

(32) is equivalent to the formula resz1=0 · · · reszr=0reszr+1=0ξ(z1, . . . , zr+1) + ∑r

i=1 resz1=0 · · ·
reszr=0reszr+1=zi

ξ(z1, . . . , zr+1) = reszr+1=0resz1=0 · · · reszr=0ξ(z1, . . . , zr+1) which is easily de-

duced from Parshin’s residue formula (10).
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